Nuclear waste, a utilitarian thought

John Stuart Mill, in the 19th century, defined utilitarianism as a doctrine that makes the useful, that which serves life or happiness, the principle of all values in the field of knowledge as well as in that of action.

For most of us, and I am obviously no exception, energy is paramount in our professional and leisure activities. Of course, I personally favour electrical energy, but the question of its origin always remains. In Europe, just over 30% of energy comes from nuclear sources.

I have already mentioned this subject in a previous article explaining why nuclear fusion energy will replace fission energy in a few decades, without waste and without risk. In the meantime, we will have to continue to manage the waste resulting from fusion. But it is very surprising to me to see that, as much as humanity can show vanity and presumptuousness, sometimes it does not believe in itself or in its capacities.

Seref Dogan Erbek

For example, the first thing that comes to mind and that we hear in the media is that it will take hundreds of thousands of years to significantly reduce the danger of nuclear waste. So we are putting future generations at risk. Really?

By being a little provocative, can we seriously think that radioactivity discovered only in 1895 by Henri Becquerel will remain in its current state of research concerning, in particular, waste? If in a little over a century we have been able to domesticate atomic fission and soon fusion, there is no reason why in future years a means will not be found to eliminate the danger of waste.  In the meantime, recycling channels are at work, and currently in France 96% of waste is recovered/reused, only 4% is so-called “ultimate” waste that needs to be stored.

Some countries, such as Finland, which obtains almost 32% of its energy from the atom, are devising intelligent strategies, even if mankind is unable to recycle 100% of its waste. Firstly, the location of a nuclear power plant is determined by where the waste is stored, i.e. in the immediate vicinity. Secondly, the safety of the burial of the waste must be envisaged for a very long period of time, even if future generations forget where it is located.

Accordingly, Finland has already begun digging a tomb designed to withstand the next ice age.  It lies exactly 437 m below the ground on Olkiluoto, an island in the Baltic Sea on the west coast of Finland. There, special guests will rest: radioactive waste that will remain so for hundreds of thousands of years. The temperature is a constant 11 degrees Celsius.

The underground labyrinth of 200 tunnels will eventually be almost 70 km long. Up to 3,250 spaces will be created where the so-called “capsules” will be stored. These will contain the used nuclear fuel. Onkalo (the translation of Finnish means burrow), the name of this site, is a veritable sarcophagus.

Fourfold protection is in place because the used fuel packages, which contain uranium and other radioactive elements such as plutonium, will be inserted into a steel cylinder, which is itself covered by a 5 cm thick copper cylinder to prevent corrosion.

The minimum duration of this protection is 100,000 years, making it the longest-lasting man-made object. The capsules will then be buried in holes at regular intervals in the Onkalo tunnels. They will be surrounded by blocks of bentonite, a type of clay found underground. Once the capsules have been placed, the tunnels themselves will be gradually filled with clay. Above this, 400 m of extremely stable granitic rock, which has not moved for two billion years.

For the time being, therefore, there is no ideal solution while waiting for the “energy of the stars”, i.e. fusion. Thus, the usefulness (no pun intended) of remembering the teaching of John Stuart Mill. I cannot resist adding a thought from Marie Curie:

“In life nothing is to be feared, everything is to be understood.”

Electric cars or missed opportunities?

If I told you that a very elegant lady waits for her electric car to be charged, undoubtedly everyone would be expecting to see a lady dressed in Prada or Dior next to a Tesla, Polestar or an EQC. However, this is not the case, as the photo illustrating my point shows, and which dates back to…1912.

This seems like a long time ago, yet the rechargeable battery had already been invented nearly 50 years earlier, in 1859 by Gaston Planté and the concept was improved in 1881 by Camille Faure.

 

In 1884, Thomas Parker, a British inventor was already able to pose next to his “Electric Cart”. Then, in 1900, another Camille, Camille Jenatzy broke the world land speed record with the first automobile surpassing 100km/h. Its name was ‘La Jamais Contente’ (The never Contented) and had 68 horsepower.

At the same time, in the streets of New York, 38% of the automotive market consisted of electric vehicles. This figure is simply astounding, while in 2021, they represent, across the entire planet, just 10million vehicles, out of 1.5 billon (0,000005%) traditional vehicles. 

These facts give… to me at least, a sensation that goes beyond vertigo, an impression of a considerable opportunity missed for humanity. Indeed, it is hard to imagine at what stage the evolution of electric cars would be at if fossil fuels hadn’t taken advantage. Range wouldn’t be a problem and full charging would take no more than a few seconds.

Seref Dogan Erbek

Instead of this, hundreds of millions of deaths, even more illnesses occur each year due to harmful emissions. Our planet is polluted, and the global damage is enormous. For more than a century, car manufacturers have only, and very slowly, improved internal combustion engines. They have lived off their profits without serious investment in new technologies, except for a few timid attempts with hydrogen-powered vehicles. All they had to do was change the shape of the headlights, increase the power a little and convince you, with enormous marketing resources, that you had to change your vehicle…

If electricity had been developed as extensively as fossil fuel engines, we would now have electric airplanes, electric boats and not just electric trains.

Obviously, my statement may seem obvious, in hindsight everyone is smarter and can give lessons. However, this is not the goal.  The real goal for me is to modestly contribute to raise awareness of a biomimetic approach. This approach is by nature, interdisciplinary. The starting point is given by fundamental research which observes, analyses and models the living. The most interesting biological models are then taken up by the engineering sciences which translate them into technical concepts. Finally, entrepreneurs take over and move on to industrial development.

If nature has not created an internal combustion engine for its needs, it is because there are better ways. Electricity is present everywhere, at the level of each atom, each molecule of the universe, including in the neurons and synapses of the reader who is now finishing this text.

So instead, let’s take more inspiration from nature, as we have done for thousands of years, the industrial era has often taken us away from this model.

Let’s all change this state of affairs!

Do you really know the “cost of using” your technology?

It’s not unusual for the younger generations consider their elders, typically of their parents age, as selfish, having emphasised their personal comfort and favouring a society of unrestrained consumption. All of this by destroying precious natural resources and by creating numerous sources of pollution.

This can’t be denied, just as one can’t deny an awareness, even if slow and overdue, is still underway. Are the youth of today really as righteous as they think? Their way of life has changed, that’s clear, favouring soft mobility, sensible consumption and activities that have a beneficial effect on nature.

It’s here that we find the crux of the debate. The sources of pollution were until now, obvious: cars, planes, central heating etc. all of which are easily identifiable, as well as “culpable” as those which had caused this way of life.

The youth that, some of the time, don’t hesitate to give lessons in morality to the ‘aged’, should perhaps take into consideration other sources of pollution, often exiled or invisible since they are out of sight.

Here are some simple examples I want to mention:

  • Sending 30 emails, with attachments costs as much, in energy as well as pollution as driving a car 100km;
  • Sending at least one less e-mail thanking the sender, over the French population, would equate to removing 4000 Diesel cars from the market per year;
  • 10% of electrical energy in Europe is consumed by datacentres;
  • Watching a streamed film consumes as much as 100amps per hour;
  • Opening (and only this, without scrolling) WhatsApp equates to driving a diesel car 13 metres.

Do you really know the “cost of using” your technology ? Seref Dogan Erbek

I could lengthen this list indefinitely and risks omitting other pertinent factors. For example, that 90% of energy consumed by a smartphone (1.5 billion unit sold per year) is generated outside of their fabrication (the components stretching on average 4 times around the planet) without mentioning the cost of recycling and its impact on health.

The worst of all, however, as it often is, is left for last. Every 2 days, the world’s population produces as much information as it has generated since the dawn of its existence back in 2003. Of course, one can hope that among this mass of data, are the works of the new Plato, Einstein and Proust, it is nevertheless more likely that the majority is composed of spam, smileys, cat videos, mindless articles, moronic and (unfortunately) mundane comments.

So, this is what I think and what I believe: history often repeats itself in an ironic way, the chances are that the current sanctimonious youth will be caught up by their children’s generation with the same grievances and criticisms…compounded by the fact that they can’t deny, this time, they know all too well the impact of their actions.

Economic recovery from COVID19 is neither green nor sustainable

The International Energy Agency (IEA), which I consider to be the global gold standard for energy data, warns that in 2021 global carbon dioxide emissions are set for their second biggest increase in history.

This huge spike is second to the massive and carbon-intensive rebound after 2008 financial crisis.

Global Energy Report 2021 of IEA predicts a 1.5 billion tonnes rise in global energy related CO2 emissions, driven by a strong rebound in demand for fossil fuels and especially coal in electricity generation.

I would like to summarise the key findings of the report:

  • Global energy demand is set to increase by 4.6% in 2021, and nearly 70% of this projected increase is in emerging markets and developing economies.
  • Demand for all fossil fuels is set to grow significantly in 2021. Coal demand alone is projected to increase by 60% more than all renewables combined.
  • Despite an expected annual increase of 6.2% in 2021, global oil demand is set to remain around 3% below 2019 levels.
  • Coal demand is on course to rise 4.5% in 2021, with more than 80% of the growth concentrated in Asia.
  • Natural gas demand is set to grow by 3.2% in 2021, driven by increasing demand in Asia, the Middle East and Russia.
  • Electricity demand is due to increase by 4.5% in 2021, or over 1 000 TWh. This is almost five times greater than the decline in 2020, bolstering electricity’s share in final energy demand above 20%.
  • Demand for renewables grew by 3% in 2020 and is set to increase across all key sectors – power, heating, industry and transport – in 2021. Solar PV and wind are expected to contribute two-thirds of renewables’ growth. The share of renewables in electricity generation is projected to increase to almost 30% in 2021.
At the launch of the report Fatih Birol, the IEA Executive Director and a leading authority on energy and climate said “This is a dire warning that the economic recovery from the Covid crisis is currently anything but sustainable for our climate… Emissions need to be cut by 45% this decade, if the world is to limit global heating to 1.5C (2.7F), scientists have warned. That means the 2020s must be the decade when the world changes course, before the level of carbon in the atmosphere rises too high to avoid dangerous levels of heating. But the scale of the current emissions rebound from the Covid-19 crisis means our starting point is definitely not a good one”
In my opinion, the findings of the report are alarming and unsettling. On the one hand, governments around the world declare the climate change their priority, on the other hand they aim a recovery by more investment through fossil fuels. I believe the financial institutions should definitely take this point into account while drawing their medium term strategies.
I would like to conclude with Fatih Birol’s warning “Unless governments around the world move rapidly to start cutting emissions, we are likely to face an even worse situation in 2022. The Leaders Summit on Climate hosted by US President Joe Biden this week is a critical moment to commit to clear and immediate action ahead of COP26 in Glasgow”.

IEA – WEO 2020 – Gov. role and scenarios

International Energy Agency (IEA) published its World Energy Outlook (WEO)2020 report on 13 October. The new report provides the latest IEA analysis of the pandemic’s impact: global energy demand is set to drop by 5% in 2020, energy-related CO2 emissions by 7%, and energy investment by 18%.

The report suggests that, although the pandemic and its aftermath can suppress emissions, low economic growth is not a low-emissions strategy. The report concludes that during this time of extraordinary uncertainty, only the governments have unique capacities to act and to guide the actions of others. I feel that the voices against more government intervention in every area increase everywhere.

The established methodology of the report is to put forward different scenarios, within which the probable developments in the energy sector are discussed. I think, these discussions are very useful especially during these turbulent times.

I would like to briefly summarize these scenarios from the outlook below:

  • The Stated Policies Scenario (STEPS), in which Covid-19 is gradually brought under control in 2021 and the global economy returns to pre-crisis levels the same year.  As I see it, this one is the least realistic scenario.
  • The Delayed Recovery Scenario (DRS) is designed with the same policy assumptions as in the STEPS, but a prolonged pandemic causes lasting damage to economic prospects. The global economy returns to its pre-crisis size only in 2023, and the pandemic ushers in a decade with the lowest rate of energy demand growth since the 1930s.
  • In the Sustainable Development Scenario (SDS), a surge in clean energy policies and investment puts the energy system on track to achieve sustainable energy objectives in full, including the Paris Agreement, energy access and air quality goals. The assumptions on public health and the economy are the same as in the STEPS. I think, this is a very optimistic scenario.
  • The new Net Zero Emissions by 2050 case (NZE2050) extends the SDS analysis. A rising number of countries and companies are targeting net-zero emissions, typically by mid-century. All of these are achieved in the SDS, putting global emissions on track for net zero by 2070.