The electric revolution in the sky

The electric revolution in European skies could take just a few years. Judging by the speed at which things are moving, particularly in Scandinavia, the first to see the dawn of zero-emission aircraft will be passengers in the far north, where a number of experimental initiatives are taking shape to get small battery-powered aircraft into the air: models that have already attracted the interest of regional carriers.

Some have announced their intention to buy the small, 9- to 19-seat prototype electric aircraft, which are essential for extensive routes in the vast northern region. The new battery-powered fleets would be available from 2026.

The type of demand for air transport is specific to northern Europe, with almost half of the operators covering a distance of less than 200 kilometres and often carrying fewer than 10 passengers.

seref dogan erbek

Short-haul routes are not economically viable for carriers, except when they are generously subsidised by the state to provide a public service to the community; the advent of electric aviation would open new frontiers to and from provincial airports. But not only that. Although it too is beginning with trials of small aircraft, the aim of the partnership between Wright Electric and the British low-cost carrier EasyJet is to produce 186-seat electric aircraft by the end of the decade. Interest in battery-powered aviation is also growing in southern Europe: in Spain, Volotea and Air Nostrum are partners in a project to convert turboprop Cessna Caravans into electric-powered aircraft, an operation they hope will be co-financed by the Madrid government, as well as the EU Next Generation funds. It’s not just about developing the aircraft of tomorrow. The advent of electric aviation in the next five years will also require strong ground support and the creation of the necessary infrastructure to recharge the batteries after landing.

Northern Europe could therefore be an excellent laboratory for the future of electric aviation, as it is obvious that the needs are very different. From small local flights to transcontinental ones, the solutions will have to be different and will surely involve technologies that are, for the moment, only at an embryonic stage. Europe with seven of its members, has set up a project that some compare to the Airbus project (EBA). It involves all the requisite levels, from basic research to practical application. The first results are expected soon, because in this field as in others, competition is fierce. Japan is a few steps ahead (22% of world production is by Panasonic) and this is due to the fact that historically Asian countries are strongly linked to this sector (China, South Korea).

The conclusion I can draw from this brief prospective view of aeronautics is that in this field too things are clear; there will be no turning back. Fossil fuels will soon be behind us, even in the sectors where this was least obvious to us.

The latest frontier in drinking water production

From my point of view, a sensible ecological transition must not make us forget about mankind. As Westerners, our focus is on increasing the share of renewable energy in comparison to fossil fuels.

The main resource that humans need is fresh water, before any other form of food and energy. I was particularly interested in the work of an innovative NGO.


The NGO GivePower has constructed and installed the first solar-powered water treatment plant on the coast of Kiunga, Kenya, to make seawater safe to drink. A revolutionary system that could change the lives of people forced to live in such poverty that it makes it difficult to afford basic necessities and solve the problems associated with the future availability of clean water caused by relentless climate change.

seref dogan erbek

This system, powered by solar energy, could be a lasting solution to the problem of lack of clean water that affects a large part of the world’s population and could become even more severe due to the dramatic effects of climate change.

Water is a precious commodity and essential for human survival, but the speed at which climate change is progressing suggests that its scarcity could increase, with devastating consequences for all of humanity.

It is estimated that by 2028, half of the world’s population will live in areas threatened by water scarcity. Freshwater, which currently accounts for 2.5% of the world’s water, is being drastically reduced due to global warming, which is affecting glaciers and icebergs and causing them to slowly disappear.

Although these doomsday scenarios are still far from the imagination of the segment of society accustomed to living in affluent conditions, the major problem of inaccessibility to fresh water is real and currently affects some 2.2 billion people worldwide.

A recent report by UNICEF and the World Health Organisation found that one in three people worldwide lack access to safe drinking water and use contaminated or untreated water for washing, cooking and drinking.

The situation is particularly critical in sub-Saharan Africa. That’s why it was decided that Kenya was the most appropriate place to start testing this revolutionary plant, which has been turning salt water from the Indian Ocean into drinking water for about a year, improving the lives of the people of Kiunga.

A significant revolution for a village that is regularly hit by drought for part of the year, forcing its inhabitants to travel for about an hour before reaching the first available source: a well connected to a reservoir whose water is dirty and contaminated by potentially deadly parasites.

The success of this first plant has prompted the NGO to set up other plants to address and solve the problem of drinking water scarcity in different parts of the world, such as Colombia and Haiti.

The facility developed and built in just one month is called Solar Water Farm and required an investment of $500,000.

The solar farm is a desalination plant. It includes the installation of solar panels capable of producing 50 kilowatts of energy, high-performance Tesla batteries to store the energy produced and two water pumps that run 24 hours a day.

Unlike traditional desalination plants, which consume large amounts of energy and make the process extremely expensive, Solar Water Farm manages to produce better quality water without causing negative environmental impacts, usually generated by the extraction of salt, which produces polluting residues harmful to animals and plants.

The facility, located along the coast of the town of Kiunga, Kenya, uses advanced filtration systems to turn salt water from the ocean into drinking water.

The ambition is big, and it’s all the more inspiring for it! Every 90 seconds a child dies as a direct or indirect consequence of lack of water…

Why hydrogen is becoming more interesting

There is a lot of interest and hope in hydrogen, but what exactly are we discussing?

I hear a lot about hydrogen and it is difficult for me to understand exactly what is involved. So here’s why I’m offering a perspective after doing a fair degree of research.


Hydrogen is an extremely common element: 90% of the universe is composed of hydrogen (H) atoms. It is important to note that, like electricity, hydrogen is an energy carrier. It is an element that is used to transport energy from point A to point B.

seref dogan erbek

The main advantage of hydrogen is its high energy density. One kilo of hydrogen can store three times more energy than one kilo of petrol, and one hundred times more than the best electric batteries!

This characteristic makes it possible to consider hydrogen as a very interesting alternative for the transport sector. Hydrogen increases the range of vehicles, especially those that travel long distances (cars, trains, heavy vehicles). Moreover, hydrogen is a gas; filling up a vehicle with a gas is much faster. While it takes 6 to 8 hours to recharge a vehicle’s electric battery, it only takes a few minutes for an electric vehicle that runs on hydrogen. Hydrogen allows both more energy to be carried, and therefore allows for longer distances to be travelled, and for a faster recharge.

However, at present, 95% of the world’s hydrogen production is made from fossil carbon resources (oil, coal, natural gas). For this reason, it is referred to as grey hydrogen. This production emits greenhouse gases and is therefore unsustainable in the event of a massive increase in the use of hydrogen.

Another option is to produce hydrogen from a very simple reaction: water electrolysis. An electric current is passed through water (H2O), which separates two molecules: hydrogen (H2) on the one hand and oxygen (O2) on the other. This process makes it possible to produce pure hydrogen in a clean way, provided that the electricity used to produce it is clean and therefore of renewable origin. Anyone interested in energy and ecological transition issues has therefore heard of hydrogen. But we can only talk about green hydrogen if it is produced from green electricity. This is where the challenge lies for an industrial scale roll-out.

The obstacles are not technological, since progress in this area has been remarkable in recent years. The issue is rather that of the primary energy source: green electricity, from photovoltaic, hydraulic or wind sources for example, must be available to produce green hydrogen. We know that the production of this type of energy is currently limited, so this is where we need to concentrate our efforts.

The state of affairs has changed considerably over the last 20 years. The technology is now advanced enough to allow its application in industrial tools and systems. The progress in performance is enormous. At the same time, the energy efficiency of fuel cells has been improved and prices have been reduced by a factor of 30 in 20 years. Cheaper and more efficient, the hydrogen sector has reached technological maturity.

At this point, I really think that hydrogen is a major asset in the transition to all-electricity. Europe is continuing to develop the sector, but the example is currently being set by Japan, which has the largest hydrogen-powered car fleet in the world and is aiming for carbon neutrality by 2050, thanks in large part to hydrogen.

I, myself, hope that the Japanese theoretical model can be applied as a practical model.